Ultrasonic properties of random media under uniaxial loading.
نویسندگان
چکیده
Acoustic properties of two types of soft tissue-like media were measured as a function of compressive strain. Samples were subjected to uniaxial strains up to 40% along the axis of the transducer beam. Measurements were analyzed to test a common assumption made when using pulse-echo waveforms to track motion in soft tissues--that local properties of wave propagation and scattering are invariant under deformation. Violations of this assumption have implications for elasticity imaging procedures and could provide new opportunities for identifying the sources of backscatter in biological media such as breast parenchyma. We measured speeds of sound, attenuation coefficients, and echo spectra in compressed phantoms containing randomly positioned scatterers either stiffer or softer than the surrounding gelatin. Only the echo spectra of gel media with soft scatterers varied significantly during compression. Centroids of the echo spectra were found to be shifted to higher frequencies in proportion to the applied strain up to 10%, and increased monotonically up to 40% at a rate depending on the scatterer size. Centroid measurements were accurately modeled by assuming incoherent scattering from oblate spheroids with an eccentricity that increases with strain. While spectral shifts can be accurately modeled, recovery of lost echo coherence does not seem possible. Consequently, spectral variance during compression may ultimately limit the amount of strain that can be applied between two data fields in heterogeneous media such as lipid-filled tissues. It also appears to partially explain why strain images often produce greater echo decorrelation in tissues than in commonly used graphite-gelatin test phantoms.
منابع مشابه
Elastic waves in fractured rocks under periodic compression
Background: One of the current problems in studying the mechanical properties and behavior of structurally inhomogeneous media with cracks is the characterization of acoustic wave propagation. This is especially important in Geomechanics and prognosis of earthquakes. Methods: In this work, the authors propose an approach that could simplify characterization of wave propagation in medium with cr...
متن کاملMechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams
Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...
متن کاملInvestigating the Creep Properties of PET-Modified Asphalt Concrete
This study has investigated the creep properties of asphaltic concrete modified with different dosages of waste polyethylene terephthalate (PET) in two different ranges of size. Uniaxial dynamic creep test at 40°C was conducted on the cylindrical specimens of the mixtures. The load was applied in two different frequencies of 0.5 and 5Hz. Creep test results showed that the accumulated strain und...
متن کاملInfluence of Uniaxial Tensile Stress on the Mechanical and Piezoelectric Properties of Short-period Ferroelectric Superlattice
Tetragonal ferroelectric/ferroelectric BaTiO(3)/PbTiO(3) superlattice under uniaxial tensile stress along the c axis is investigated from first principles. We show that the calculated ideal tensile strength is 6.85 GPa and that the superlattice under the loading of uniaxial tensile stress becomes soft along the nonpolar axes. We also find that the appropriately applied uniaxial tensile stress c...
متن کاملElectronic and Optical Properties of AlN Nanosheet Under Uni-axial Strain
We have investigated the electronic and optical properties of AlN hexagonal nanosheets under different kinds of strains, using the band structure results obtained through the full potential linearized augmented plane wave method within the density functional theory. The results show that 10% uniaxial strain along the zig-zag direction induces an indirect to direct band-gap transition. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 110 6 شماره
صفحات -
تاریخ انتشار 2001